Abstract

Knowing when a process has changed would simplify the search for and identification of the special cause. Consequently, having an estimate of the process change point following a control chart signal would be useful to process engineers. Much of the literature on change point models and techniques for statistical process control applications consider processes well modelled by the normal distribution. However, the Poisson distribution is commonly used in industrial quality control applications for modelling attribute-based process quality characteristics (e.g., counts of non-conformities). Some commonly used control charts for monitoring Poisson distributed data are the Poisson cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts. In this paper, we study the effect of changes in the design of the control chart on the performances of the change point estimators offered by these procedures. In particular, we compare root mean square error performances of the change point estimators offered by the Poisson CUSUM and EWMA control charts relative to that achieved by a maximum likelihood estimator for the process change point. Results indicate that the relative performance achieved by each change point estimator is a function of the corresponding control chart design. Relative mean index plots are provided to enable users of these control charts to choose a control chart design and change point estimator combination that will yield robust change point estimation performance across a range of potential change magnitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call