Abstract

In this article, we propose a restricted Liu regression estimator (RLRE) for estimating the parameter vector, β, in the presence of multicollinearity, when the dependent variable is binary and it is suspected that β may belong to a linear subspace defined by Rβ = r. First, we investigate the mean squared error (MSE) properties of the new estimator and compare them with those of the restricted maximum likelihood estimator (RMLE). Then we suggest some estimators of the shrinkage parameter, and a simulation study is conducted to compare the performance of the different estimators. Finally, we show the benefit of using RLRE instead of RMLE when estimating how changes in price affect consumer demand for a specific product.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.