Abstract
AbstractBeta regression has become a popular tool for performing regression analysis on chemical, environmental, or biological data in which the dependent variable is restricted to the interval [0, 1]. For the first time, in this paper, we propose a Liu estimator for the beta regression model with fixed dispersion parameter that may be used in several realistic situations when the degree of correlation among the regressors differs. First, we show analytically that the new estimator outperforms the maximum likelihood estimator (MLE) using the mean square error (MSE) criteria. Second, using a 'simulation study, we investigate the properties in finite samples of six different suggested estimators of the shrinkage parameter and compare it with the MLE. The simulation results indicate that in the presence of multicollinearity, the Liu estimator outperforms the MLE uniformly. Finally, using an empirical application on chemical data, we show the benefit of the new approach to applied researchers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.