Abstract

The logistic regression model is used when the response variables are dichotomous. In the presence of multicollinearity, the variance of the maximum likelihood estimator (MLE) becomes inflated. The Liu estimator for the linear regression model is proposed by Liu to remedy this problem. Urgan and Tez and Mansson et al. examined the Liu estimator (LE) for the logistic regression model. We introduced the restricted Liu estimator (RLE) for the logistic regression model. Moreover, a Monte Carlo simulation study is conducted for comparing the performances of the MLE, restricted maximum likelihood estimator (RMLE), LE, and RLE for the logistic regression model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.