Abstract

Adaptive algorithms based on the Kalman filter are valuable tools to model the dynamic and directed Granger causal interactions between neurophysiological signals simultaneously recorded from multiple cortical regions. Among these algorithms, the General Linear Kalman Filter (GLKF) has proven to be the most accurate and reliable. Here we propose a regularized and smoothed GLKF (spsm-GLKF) with ℓ1 norm penalties based on lasso or group lasso and a fixedinterval smoother. We show that the group lasso penalty promotes sparse solutions by shrinking spurious connections to zero, while the smoothing increases the robustness of the estimates. Overall, our results demonstrate that spsm-GLKF outperforms the original GLKF, and represents a more accurate tool for the characterization of dynamical and sparse functional brain networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.