Abstract

Single-photon avalanche diodes (SPADs) are critical components in low-light-level sensing and photonic quantum information applications. For these, it is often necessary that a full characterization of the SPAD is performed, for which a key metric is the afterpulse probability. This study provides a detailed comparison of the common synchronized and non-synchronized methods used to measure afterpulse probability. Measurements on a single SPAD reveal inconsistencies between the afterpulse probabilities obtained by the two methods. By re-deriving the equations from first principles, the discrepancy is traced to the analysis approach for the non-synchronized experiment. An improved analysis approach is presented, leading to better agreement between the non-synchronized and synchronized methods. The study also provides guidance on the experimental conditions required for the valid application of both methods, along with a detailed analysis of the limitations of the non-synchronized method under high photon flux. These findings offer a more accurate approach for characterizing afterpulse probability and for reconciling the results of two methods, which enables better quantification of SPAD performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.