Abstract

Hypochlorous acid (HClO) as well as its ionic form (ClO−), representative of reactive oxygen species (ROS), are essential players in all sorts of biological processes. The abnormal level of each can lead to the onset of various diseases. Besides, Sodium hypochlorite, a commonly-used bleaching agent in our daily lives, could also result in breathing and skin problems when overexposed. Therefore, developing a molecular chemosensor for sensing HClO is of biological and environmental importance. Though many such chemosensors have been reported, new HClO chemosensors with different sensing performances may still come in handy in certain situations. In this work, we have developed a new coumarin-based chemosensor, CM-hbt, for realizing both ratiometric and colorimetric imaging detection of HClO in live cells. Notably, we further explored its application in sensing HClO in plant mung beans as well as fabricated an easy-to-use paper strip apparatus for facilitating its quick detection, which is seldomly seen in other HClO chemosensors. All the analysis results confirmed the high sensitivity and selectivity of this novel chemosensor. DFT calculations were used to decipher the underlying sensing mechanism of CM-hbt. Overall, this work presents a novel chemosensor, CM-hbt, as a colorimetric and ratiometric chemosensor for realizing imaging detection of HClO in a variety of different model systems, which highlights its broad spectrum of application potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.