Abstract

The objectives of this study were to analyze and compare the proteomic and peptide profiles of mung bean (Vigna radiata) seeds and sprouts. Label-free proteomics and peptidomics technologies allowed the identification and relative quantification of proteins and peptides. There were 1918 and 1955 proteins identified in mung bean seeds and sprouts, respectively. The most common biological process of proteins in these two samples was the metabolic process, followed by cellular process and single-organism process. Their dominant molecular functions were catalytic activity, binding, and structural molecule activity, and the majority of them were the cell, cell part, and organelle proteins. These proteins were primarily involved in metabolic pathways, biosynthesis of secondary metabolites, and ribosome. PCA and HCA results indicated the proteomic profile varied significantly during mung bean germination. A total of 260 differential proteins between mung bean seeds and sprouts were selected based on their relative abundance, which were associated with the specific metabolism during seed germination. There were 2364 peptides identified and 76 potential bioactive peptides screened based on the in silico analysis. Both the types and concentration of the peptides in mung bean sprouts were higher than those in seeds, and the content of bioactive peptides in mung bean sprouts was deduced to be higher.

Highlights

  • The mung bean (Vigna radiata) has been widely consumed as one of the most valuable edible legume crop sources in many countries for a long time, such as China, Canada, and the United States [1]

  • Analysis of the proteomic profiles of mung bean seeds and sprouts The protein concentration in mung bean sprouts (23.92 mg/mL) was lower than that in mung bean seeds (37.59 mg/mL), which could be due to the fact that the storage proteins were continuously hydrolyzed by the activated mung bean proteases to provide the necessary nutrition for seed germination and seedling growth [15]

  • The abundance of the globulins in mung bean seeds and sprouts accounted for 69.35% and 71.25% of the total protein abundance in the respective samples, which could be comparable with the results reported in the previous studies [1]

Read more

Summary

Introduction

The mung bean (Vigna radiata) has been widely consumed as one of the most valuable edible legume crop sources in many countries for a long time, such as China, Canada, and the United States [1]. Mung bean contains balanced nutrients and has a high nutritional value [3]. Certain bioactivities including angiotensin I-converting enzyme (ACE) inhibitory activity, antioxidant activity, and antibacterial activity have been identified in the peptides of the mung bean protein hydrolysate [11]. Only three kinds of mung bean peptides (KDYRL, VTPALR, and KLPAGTLF) have been confirmed to have ACE inhibitory activity [12]. There are limited reports on the comprehensive proteomic and peptide profiles of mung bean

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call