Abstract

With the development of social society, sleep deprivation has become a serious and common issue. Previous studies documented that there is a correlation between sleep deprivation and oxidative stress. However, the information of sleep deprivation related ROS has rarely been obtained. Also, it has been demonstrated that sleep deprivation can induce endoplasmic reticulum (ER) stress. As such, for a better understanding of sleep deprivation as well as its related diseases, it is important to develop probes with ER-targeting ability for detecting ROS generated in this process. Herein, a novel two-photon fluorescent molecular probe, JX-1, was designed for sensing HClO in live cells and zebrafish. The investigation data showed that in addition to real-time response (about 150s), the probe also exhibited high sensitivity and selectivity. Moreover, the probe JX-1 demonstrated two-photon fluorescence, low cytotoxicity and ER targeting ability. These prominent properties enabled the utilization of the probe for monitoring exogenous and endogenous HClO in both live cells and zebrafish. Using this useful tool, it was found that sleep deprivation can induce the generation of HClO in zebrafish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.