Abstract

Isoflavones play diverse roles in plant–microbe interactions and are potentially important for human nutrition and health. To study the regulation of isoflavonoid synthesis in soybean, the R2R3-MYB transcription factor GmMYB12B2 was isolated and characterized. Yeast expression experiments demonstrated that GmMYB12B2 showed transcriptional activity. GmMYB12B2 was localized in the nucleus when it was transiently expressed in onion epidermal cells. Real-time quantitative PCR analysis revealed that GmMYB12B2 transcription was increased in roots and mature seeds compared with other organs. The gene expression level in immature embryos was consistent with the accumulation of isoflavones. CHS8 is a key enzyme in plant flavonoid biosynthesis. Transient expression experiments in soybean calli demonstrated that CHS8 was regulated by GmMYB12B2 and produced more fluorescence. The expression levels of some key enzymes in flavonoid biosynthesis were examined in transgenic Arabidopsis lines. The results showed that the expression levels of PAL1, CHS and FLS in transgenic plants were significantly higher than those in wild type plants. However, the expression level of DFR was lower, and the expression levels of CHI, F3H and F3′H were the same in all lines. GmMYB12B2 expression caused a constitutive increase in the accumulation of flavonoids in transgenic Arabidopsis lines compared with wild type plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call