Abstract

This paper presents a method to improve the computational efficiency of the scaled boundary finite element formulation for functionally graded materials. Both isotropic and orthotropic functionally graded materials are considered. This is achieved using a combination of quadtree and polygon meshes. This hybrid meshing approach is particularly suitable to be used with the SBFEM for functionally graded materials because of the significant amount of calculations required to compute the stiffness matrices of the polygons/cells in the mesh. When a quadtree structure is adopted, most of the variables required for the numerical simulation can be pre-computed and stored in the memory, retrieved and scaled as required during the computations, leading to an efficient method for crack propagation modeling. The scaled boundary finite element formulation enables accurate computation of the stress intensity factors directly from the stress solutions without any special post-processing techniques or local mesh refinement in the vicinity of the crack tip. Numerical benchmarks demonstrate the efficiency of the proposed method as opposed to using a purely polygon-mesh based approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.