Abstract
This study presents the development of the scaled boundary finite element method to model discrete crack propagation induced by thermal loads. The SBFEM excels in modeling stress singularities at sharp crack tips with high accuracy. Polygon meshes are used so that a robust local re-meshing algorithm can be utilized to propagate the crack. The scaled boundary finite element formulation for steady-state thermal stress analysis is presented. Following a scaled boundary finite element analysis of a given thermal problem, the effect of initial strains due to temperature is taken into account semi-analytically in a subsequent stress analysis. Several numerical examples are presented to validate the technique and illustrate its salient features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.