Abstract

This study presents the development of the scaled boundary finite element method to model discrete crack propagation induced by thermal loads. The SBFEM excels in modeling stress singularities at sharp crack tips with high accuracy. Polygon meshes are used so that a robust local re-meshing algorithm can be utilized to propagate the crack. The scaled boundary finite element formulation for steady-state thermal stress analysis is presented. Following a scaled boundary finite element analysis of a given thermal problem, the effect of initial strains due to temperature is taken into account semi-analytically in a subsequent stress analysis. Several numerical examples are presented to validate the technique and illustrate its salient features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call