Abstract

Microplastic pollution in water bodies is an alarming problem which needs to be addressed. However, issues such as size, shape and their appearance to light (transparent or translucent) make it difficult to be optically detected. Here, a feasibility study of a portable prototype optical sensor with the capability of measuring simultaneously specular laser light reflection and transmission from microplastic particles is presented. The specular reflection signal and the transmitted interference pattern were recorded with a photodiode and a CCD camera, respectively. With the combination of these two modes of detection, it is possible to screen the type, size, and nonplanarity of two microplastics types, i.e., transparent polyethylene terephthalate (PET) and translucent low-density polyethylene (LDPE), in a volume of freshwater, with high confidence. In principle, the prototype could be used for the detection of both floating microplastics as well as microplastics experiencing sedimentation in natural water bodies, and in water filtration in water treatment plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.