Abstract

Single-particle tracking (SPT) makes it possible to directly observe single protein diffusion dynamics in living cells over time. Thus, SPT has emerged as a powerful method to quantify the dynamics of nuclear proteins such as transcription factors (TFs). Here, we provide a protocol for conducting and analyzing SPT experiments with a focus on fast tracking ("fastSPT") of TFs in mammalian cells. First, we explore how to engineer and prepare cells for SPT experiments. Next, we examine how to optimize SPT experiments by imaging at low densities to minimize tracking errors and by using stroboscopic excitation to minimize motion-blur. Next, we discuss how to convert raw SPT data into single-particle trajectories. Finally, we illustrate how to analyze these trajectories using the kinetic modeling package Spot-On. We discuss how to use Spot-On to fit histograms of displacements and extract useful information such as the fraction of TFs that are bound and freely diffusing, and their associated diffusion coefficients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call