Abstract

Heterogeneous diffusion processes occur in many different fields such as transport in living cells or diffusion in porous media. A characterization of the transport parameters of such processes can be achieved by ensemble-based methods, such as pulsed field gradient nuclear magnetic resonance (PFG NMR), or by trajectory-based methods obtained from single-particle tracking (SPT) experiments. In this paper, we study the general relationship between both methods and its application to heterogeneous systems. We derive analytical expressions for the distribution of diffusivities from SPT and further relate it to NMR spin-echo diffusion attenuation functions. To exemplify the applicability of this approach, we employ a well-established two-region exchange model, which has widely been used in the context of PFG NMR studies of multiphase systems subjected to interphase molecular exchange processes. This type of systems, which can also describe a layered liquid with layer-dependent self-diffusion coefficients, has also recently gained attention in SPT experiments. We reformulate the results of the two-region exchange model in terms of SPT-observables and compare its predictions to that obtained using the exact transformation which we derived.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call