Abstract

We propose a renormalization scheme for non-local Quantum Field Theories (QFTs) with infinite derivatives inspired by string theory. Our Non-locality Renormalization Scheme (NRS) is inspired by Dimensional Regularization (DR) in local QFTs and is shown to significantly improve the UV behavior of non-local QFTs. We illustrate the scheme using simple examples from the ϕ3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\phi ^{3}$$\\end{document} and ϕ4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\phi ^{4}$$\\end{document} theories, then we evaluate the viability of NRS-enhanced non-local QFTs to solve the hierarchy problem using a simplified toy model. We find that non-locality protects the mass of a light scalar from receiving large corrections from any UV sector to which it couples, as long as the non-locality scale Λ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Lambda $$\\end{document} is sufficiently smaller than the scale of the UV sector. We also find that NRS eliminates any large threshold corrections from the IR sector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.