Abstract
Using the Bower–Liang model, we discuss how pressure anisotropies affect the microscopic and macroscopic properties of hybrid stars. We find that anisotropies affect the maximum mass, central density, and radius of the canonical stars. Anisotropies also affect the minimum neutron star mass that presents quarks in their core, as well as the total amount of quarks for the maximally massive stars. We also confront our results with standard constraints, such as the radius and the tidal parameter of the canonical star, as well as the mass and radius of the PSR J0740+6620 pulsar. We observe that moderate values for anisotropies could fulfill these constraints simultaneously. On the other hand, within more extreme degrees of anisotropies, more speculative constraints such as black widow pulsars PSR J0952-0607 and the mass-gap object in the GW190814 event can be explained as hybrid stars. We also investigate the role of anisotropies in the neutron stars’ moment of inertia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.