Abstract

Alternative navigation technology to global navigation satellite systems (GNSSs) is required for unmanned ground vehicles (UGVs) in multipath environments (such as urban areas). In urban areas, long-term evolution (LTE) signals can be received ubiquitously at high power without any additional infrastructure. We present a machine learning approach to estimate the range between the LTE base station and UGV based on the LTE channel impulse response (CIR). The CIR, which includes information of signal attenuation from the channel, was extracted from the LTE physical layer using a software-defined radio (SDR). We designed a convolutional neural network (CNN) that estimates ranges with the CIR as input. The proposed method demonstrated better ranging performance than a received signal strength indicator (RSSI)-based method during our field test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.