Abstract

To utilize an integrative strategy to construct functional miRNA-mRNA regulatory networks by combining the reverse expression relationships between miRNAs and targets and computational predictions for gestational diabetes mellitus (GDM). A total of three microarray or RNA-seq datasets (GSE98043, GSE19649 and GSE92772) of plasma samples comparing GDM pregnant women and healthy control pregnant women were downloaded from the GEO database. The differentially expressed genes (DEmRNAs) and the differentially expressed miRNAs (DEmiRNAs) was performed. The target genes of DEmiRNAs were identified using two independent and complementary types of information: computational target predictions and expression relationships. An interaction network was constructed to identify hub genes of GDM. Another dataset (GSE92772) was used to externally verify the predictive ability of the hub genes. A total of 264 DEmiRNAs and 1217 DEmRNAs were identified with Hsa-miR-146a-3p ranked first of DEmiRNAs. Functions of GDM-related miRNAs were mainly enriched in the glypican pathway, proteoglycan syndecan-mediated signaling events, and syndecan-1-mediated signaling events. A total of 47 target genes, including TRAF6, were shared between the computational target predictions and DEmRNAs and were identified as target genes of hsa-miR-146a-3p. The interaction network analysis identified TRAF6, CASP8, PTPN6, and CHD3 as hub genes involved in the pathophysiological process of GDM. Next, independent external validation was performed using the GSE19649 dataset. The expression of TRAF6, CASP8 and CHD3 in eight pairs of GDM blood samples was confirmed to be higher than that in healthy pregnant women blood samples with a AUC of 0.813, 0.813, and 0.703, respectively. Our preliminary analysis revealed that miR-146a-3p/TRAF6 might play a central role in the pathogenesis of GDM. Three hub genes, TRAF6, CASP8, and CHD3, were identified and independently externally validated as potential GDM noninvasive serum markers for future biomarkers research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call