Abstract
Monitoring of structures’ condition plays a fundamental role in providing safety for users and extending the structures’ lifespan. The monitoring is conducted through on-site inspections by engineers thus this process is time-consuming, labor-intensive and prone to subjective engineering opinions. Detecting damage using machine learning algorithms on images can support engineers’ work, especially for early damages which are difficult to see with the human eye. This article is focused on the concrete crack detection problem in engineering structural elements. Despite the availability of several concrete crack detection datasets, no dataset allows semantic segmentation of cracks narrower than 0.3 mm (the crack width limit for typical engineering structures elements and environmental conditions according to EC 1992-1-1) and the ability for crack classification is limited. The provided open dataset represents only cracks below the crack width limit of 0.3mm, which do not yet indicate concrete elements failure. It is dedicated for early crack classification and segmentation, so that damage protection can be taken at an early stage to prevent structural element damages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.