Abstract

AbstractDeep learning has become a widely practiced approach in research arenas related to civil infrastructures. Monitoring concrete structures is time-consuming, costly, unsafe, and laborious. Instead of manual inspection, the deep learning approach increases more possibility to automate this inspection process helping to mitigate future risk. This study introduces an automatic concrete surface crack detection and classification technique using a deep learning architecture, namely Xception to alleviate the risks due to deteriorating structure conditions. At first, the Xception model was trained and tested on a public dataset consisting of cracked and non-cracked images, and the model has shown superior accuracy in two-class classification. Afterward, the cracked sub-dataset was split into two classes–horizontally cracked and vertically cracked using a traditional computer vision approach to determine the inclination angle of a crack. The proposed deep learning model was trained on the newly formed dataset and performed remarkably in three-class classification as well. This paper demonstrates the proposed model's effectiveness, performance, and findings, providing a reference for concrete surface crack detection and classification for related domains.KeywordsConcrete surfaceCrack detectionCrack classificationXceptionDeep learning

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.