Abstract
Abstract Crack detection is a critical task in monitoring and inspection of civil engineering structures. Image classification and bounding box approaches have been proposed in existing vision-based automated concrete crack detection methods using deep convolutional neural networks. The current study proposes a crack detection method based on deep fully convolutional network (FCN) for semantic segmentation on concrete crack images. Performance of three different pre-trained network architectures, which serves as the FCN encoder's backbone, is evaluated for image classification on a public concrete crack dataset of 40,000 227 × 227 pixel images. Subsequently, the whole encoder-decoder FCN network with the VGG16-based encoder is trained end-to-end on a subset of 500 annotated 227 × 227-pixel crack-labeled images for semantic segmentation. The FCN network achieves about 90% in average precision. Images extracted from a video of a cyclic loading test on a concrete specimen are used to validate the proposed method for concrete crack detection. It was found that cracks are reasonably detected and crack density is also accurately evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.