Abstract

Simple SummaryThe eukaryotic elongation factor 1 alpha (eef1a) gene is vital for protein translation by delivering aminoacylated tRNAs to the A/P site of the ribosome via the GTP-dependent reaction. Here, the Chinese tongue sole (Cynoglossus semilaevis) eef1a1 gene was identified, and its potential role in gonadal high-temperature perception was assessed. The full-length sequence of eef1a1 cDNA was 1809 base pair (bp) encoding a putative protein of 461 amino acids. The expression levels of eef1a1 in the ovary were significantly higher than that in the testis from 6 mpf to 3 ypf. Under high-temperature induction during sex differentiation, eef1a1 was significantly down-regulated in males, while the difference was not detected in females. Furthermore, the rapid response of eef1a1 to environmental high temperature was assessed in vitro. Our findings suggest that C. semilaevis eef1a1 might be essential for the molecular response regulatory network of external temperature affecting internal sex differentiation.The eukaryotic translation elongation factor 1 alpha (eef1a) gene has a well-defined role in protein synthesis. However, its role in external temperature perception and internal sex differentiation and development is still unclear. In this study, eef1a1 was identified and functionally analyzed in Chinese tongue sole (Cynoglossus semilaevis). The eef1a1 cDNA, 1809 bp in length, had a 1386 bp open reading frame (ORF) that encoded a 461 amino acid polypeptide containing one EF-1_alpha domain. eef1a1 expression levels were investigated across different tissues and during gonadal development. In the gonad, eef1a1 showed a sexually dimorphic expression pattern with a statistically higher expression level in the ovary than in the testis from 6 months postfertilization to 3 years postfertilization. Under high temperature (28 °C) treatment during C. semilaevis sex differentiation (from 30 days postfertilization to 3 months postfertilization), eef1a1 was statistically down-regulated in males, while the difference was not detected in females. In addition, the dual-luciferase assay exhibited that eef1a1 can respond to high temperature rapidly. Based on these results, C. semilaevis eef1a1 might have a dual role in the perception of external temperature changes and sex differentiation regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.