Abstract

We develop a new approach to a posteriori error estimation for Galerkin finite element approximations of symmetric and nonsymmetric elliptic eigenvalue problems. The idea is to embed the eigenvalue approximation into the general framework of Galerkin methods for nonlinear variational equations. In this context residual-based a posteriori error representations are available with explicitly given remainder terms. The careful evaluation of these error representations for the concrete situation of an eigenvalue problem results in a posteriori error estimates for the approximations of eigenvalues as well as eigenfunctions. These suggest local error indicators that are used in the mesh refinement process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.