Abstract

AbstractAs artificial intelligence technology advances, automated structural design has emerged as a new research focus in recent years. This paper combines finite element method (FEM) and deep reinforcement learning (DRL) to establish a physics‐informed framework, named FrameRL, for automated steel frame structure design. FrameRL models the design process of steel frames as a reinforcement learning (RL) process, enabling the agent to simulate a structural engineer's role, interacting with the environment to learn the methods and policies for structural design. Through computer experiments, it is demonstrated that FrameRL can design a safe and economical structure within 1 s, significantly faster than manual design processes. Furthermore, the design performance of FrameRL is compared with traditional optimization algorithms in three typical design cases and a high‐rise steel frame case, demonstrating that FrameRL can efficiently complete structural design based on learned design experiences and policies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.