Abstract

We present a high-performance source of unconditional polarization-entangled photons that have a high-emission rate, a broadband distribution, are degenerated and postselection free. The property of the source is based on the multiple quantum interference effect with a round-trip configuration of a Sagnac interferometer. The quantum interference effects make it possible to use the high generation efficiency of the polarization-entangled photons to process parametric down-conversion, and separate degenerated photon pairs into different optical modes without a postselection requirement. The principle of the optical system was described and experimentally used to measure the fidelity and Bell parameters, and also to characterize the generated polarization-entangled photons from a minimum of six combinations of polarization correlated data. The experimentally obtained fidelity and Bell parameters exceeded the classical local correlation limit and are clear evidence of the generation of unconditional polarization-entangled photons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call