Abstract

Electron transport across a molecular junction is characterized by an energy-dependent transmission function. The transmission function accounts for electrons tunneling through multiple molecular orbitals (MOs) with different phases, which gives rise to quantum interference (QI) effects. Because the transmission function comprises both interfering and noninterfering effects, individual interferences between MOs cannot be deduced from the transmission function directly. Herein, we demonstrate how the transmission function can be deconstructed into its constituent interfering and noninterfering contributions for any model molecular junction. These contributions are arranged in a matrix and displayed pictorially as a QI map, which allows one to easily identify individual QI effects. Importantly, we show that exponential conductance decay with increasing oligomer length is primarily due to an increase in destructive QI. With an ability to "see" QI effects using the QI map, we find that QI is vital to all molecular-scale electron transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.