Abstract

A carrier phase reconstruction technique is presented as an enabler for low-power centimeter-accurate mobile positioning. Reliable carrier phase reconstruction permits the duty cycling of a Global Navigation Satellite System (GNSS) receiver whose outputs are used for precise carrier-phase differential GNSS (CDGNSS) positioning. Existing CDGNSS techniques are power intensive because they require continuous tracking of each GNSS signal's carrier phase. By contrast, the less-precise code-ranging technique that is commonly used in mobile devices for 3-to-10-meter-accurate positioning allows for aggressive measurement duty-cycling, which enables low-power implementations. The technique proposed in this paper relaxes the CDGNSS continuous phase tracking requirement by solving a mixed real and integer estimation problem to reconstruct a continuous carrier phase time history from intermittent phase measurement intervals each having an ambiguous initial phase. Theoretical bounds on the probability of successful phase reconstruction, corroborated by Monte-Carlo-type simulation, are used to investigate the sensitivity of the proposed technique to various system parameters, including the time period between successive phase measurement intervals, the duration of each interval, the carrier-to-noise ratio, and the line-of-sight acceleration uncertainty. A demonstration on real data indicates that coupling a GNSS receiver with a consumer-grade inertial measurement unit enables reliable phase reconstruction with phase measurement duty cycles as low as 5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.