Abstract

The present work considers the approximation of solutions of a type of fractional-order Volterra–Fredholm integro-differential equations, where the fractional derivative is introduced in Caputo sense. In addition, we also present several applications of the fractional-order differential equations and integral equations. Here, we provide a sufficient condition for existence and uniqueness of the solution and also obtain an a priori bound of the solution of the present problem. Then, we discuss about the higher-order model equation which can be written as a system of equations whose orders are less than or equal to one. Next, we present an approximation of the solution of this problem by means of a perturbation approach based on homotopy analysis. Also, we discuss the convergence analysis of the method. It is observed through different examples that the adopted strategy is a very effective one for good approximation of the solution, even for higher-order problems. It is shown that the approximate solutions converge to the exact solution, even for higher-order fractional differential equations. In addition, we show that the present method is highly effective compared to the existed method and produces less error.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.