Abstract

The pedestrian evacuation process during the propagation of smoke in case with and without guider is investigated. The effects of leaders on the evacuation are considered. The model is based on the social force model for pedestrians’ motions. The advection–diffusion equation is applied for the dispersion of smoke. The movement direction of a guider is guided by the solution of the Eikonal equation. It relies on the desired speed and the smoke density. A pedestrian who is not a guider follows the rule termed ‘flow with the stream’ and ‘following the wall’. We perform different numerical experiments in a room with one and two exits. The results show that the guiders effect on the evacuation time when they are large number of individuals in simulation. It can help to increase the number of evacuees. With small number of individuals in the experiment, the effect of guiders on evacuation time is not obvious. Further, simulation results are found that the domain with two exits provides higher number of outside pedestrians than the domain with a single door. Longer evacuation time period can increase the number of evacuees. The visibility range of a pedestrian is reduced when an additional smoke source is added to the system. It decreases the number of evacuees. The results of the proposed model are discussed and compared with the existing models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.