Abstract

Proton exchange membrane fuel cell (PEMFC) has a promising future in the power generation and transportation fields. Recirculation of unused anodic gases is fundamental to achieve a high-performance energy system, and this is usually attained employing ejectors or pumps. With respect to the latter, ejectors present no moving parts, thus resulting in both higher overall efficiency of the system and lower maintenance cost. Their main drawback is represented by the narrow optimal operative range: the entrainment ratio (ER) greatly depends on primary pressure, working pressure, and operative condition in general. In the last decade, numerous authors focused their efforts on fully comprehending and correctly simulating their working principles and analyzing how geometrical parameters influence ER and design different geometries to enlarge the operative range. The aim of this paper is to present in an ordered and clear manner the state of the art of ejector design, both from simulative (turbulence model, single or multiphase stream, etc.) and empirical (commonly used “rule of thumb”) points of view.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call