Abstract

In this paper, the initiation and propagation of structural damage in a building due to the truck collision to one of its corner columns were investigated. For this purpose, a three-dimensional 4-story moment resisting steel frame with intermediate ductility was considered. The structure was designed using ETABS software under standard dead, live, and earthquake loads, and then impact loading was applied on the structure using ABAQUS software. The effect of truck collision with different weights and speeds was simulated conducting three-dimensional nonlinear dynamic analyses. The internal stresses and forces created in the directly impacted column, as well as other parts of the structure, were obtained. Using appropriate plasticity models, the shear failure of a steel material was considered. A parametric study was performed in order to investigate the effect of different parameters on the possibility of progressive collapse. To validate the procedure of impact modeling, some available experimental vehicle to column collision tests were simulated. The results revealed that the mass and speed of the impactor had a significant effect on the response of the structure. So that, for high-momentum impactors, the traditional column removal method may yield a good approximation of the behavior of the structure. However, for low-momentum impactors, a time-history analysis without removing the hit column is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.