Abstract

Progressive collapse is a partial or total failure of a building that mostly occurs when the build-ing loses primary structural elements (typically columns) due to accidental or natural hazards. The failure of structures due to an earthquake is one of the most important and frequent types of progressive collapse. In this study, the finite element method is used to assess the response of multistory reinforced concrete buildings subjected to column loss during an earthquake. Three-dimensional nonlinear dynamic analyses are carried out using SAP2000 V.20 program. The ef-fects of different parameters on the progressive collapse behavior are investigated, namely: the location of the removed column within the ground floor; the method of column removal (sudden, in two-steps, and in four-steps) and the removal timing during the earthquake. It is demonstrated that the collapse occurs when all or most of the hinges at the bases of the ground floor columns reach their collapse level. The chosen column removal timing and policy affect the structural behavior considerably. It is realized that, the risk of building collapse increases when the removal timing harmonizes with the peak ground acceleration timing. Based on the adopted earthquake characteristics and building configurations, it is found that, the two steps removal scenario is the most dangerous one.Keywords:Progressive collapse, Concrete buildings, Seismic load, Nonlinear dynamic analysis, Plastic hinge.© 2014

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.