Abstract

This paper proposes an efficient parallel memory system for algorithms applied in fixed and variable block-size motion estimation (VBSME). The proposed system is implemented by a novel combination of two parallel memory architectures. The distribution of data among the memory modules is modified over contemporary approaches and the optimized address computation unit enables a rapid address generation for accessed memory locations. Furthermore, the introduced data permutation scheme organizes data efficiently for storage and retrieval. The proposed system enables up to 4 X speedup in data storage and retrieves data up to 55% faster for VBSME compared with the reference implementations. With a 0.18- mum CMOS technology, the proposed memory addressing and data permutation scheme can be clocked at 980 MHz operating frequency with a cost of less than 6 kgates. On FPGA, the system can operate at 200 MHz with less than 700 logic elements. The results show that the proposed system is applicable to real-time VBSME at HDTV resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.