Abstract
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms and the solution are stochastic processes. Numerous studies have employed orthogonal polynomials, however most of them focus on deterministic rather than stochastic systems. This is the reason why in this study, we looked into a numerical solution for the stochastic Ito-Volterra integral equation using the explicit finite difference scheme and Bernstein polynomials as trial functions. The equidistant collocation procedure was used to calculate the unknown constant parameters in between and reach the desired approximation. The method was evaluated and contrasted with the Block Pulse method for approximate answers based on the aforementioned method, which were obtained and compared with others in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.