Abstract

The critical role of supply chain security for businesses and government agencies has resulted in significant efforts over the last two decades to reduce vulnerability or disruption in supply chains. This paper addresses the routing problem of security carriers for high-value shipment transportation by developing a rich variant of the vehicle routing problem. To secure the route plans, the predictability of vehicle paths beside the travel costs is minimized by proposing a new integrated dynamic risk index. We present a mixed integer linear programming formulation for this problem, called the secure pickup and delivery problem with time windows (S-PDPTW). Moreover, a meta-heuristic solution method based on the adaptive large neighborhood search algorithm is developed to tackle the large-size instances. Extensive computational experiments for the target problem and the proposed algorithm demonstrate the efficiency of all developed procedures. Using the geographical information system, we provide some managerial insights based on a real case from the strategic and operational perspectives, whereby the applicability of the developed model is clearly shown in considerably reducing the risk value against a slight increase in classic objective value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.