Abstract
A novel vapor-compression system concept employing carbon dioxide as the refrigerant is proposed to serve the needs of a typical medium-size refrigerated truck used for multi-temperature (MT and LT) goods delivery. The system design is based on the implementation of an ejector as the only component increasing the refrigerant pressure from the LT evaporation pressure to the MT evaporation pressure, thus providing cooling effect at two different temperature levels with only one stage of compression. The ejector was experimentally tested and its ability to effectively entrain mass flow rate from low pressure suction conditions (corresponding to a LT evaporation temperature of −25 °C) was assessed. Lower external ambient temperatures and consequent lower expansion energy available at the ejector motive nozzle leads to a reduction of the maximum achievable pressure lift. Moreover, a significant degradation of the ejector performance towards the highest pressure lifts is experienced. Based on the ejector experimental data, a numerical evaluation of the proposed cooling unit performance has been performed, highlighting that in design conditions (LT evaporation at −25 °C) the cooling unit provides a LT freezing power ranging between 1.1 kW and 2.3 kW and a corresponding minimum MT cooling power ranging between 5.1 kW and 3.8 kW, depending on the chosen ejector lift. The MT cooling power can be further increased by increasing the compressor mass flow rate. The system COP is maximized at the maximum available lift provided by the ejector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.