Abstract

BackgroundGlutamate is one of the major neurotransmitters in the central nervous system. It is a potent neurotoxin capable of neuronal destruction through numerous signal pathways when present in high concentration. Glutamate-evoked excitotoxicity has been implicated in the etiology of many neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and ischemic stroke. Increasing evidence has shown that reactive oxygen species (ROS) provoked by glutamate-linked oxidative stress plays a crucial role in the pathogenesis of these disorders. We previously reported the discovery of an aryl thiophene compound, 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-2-sulfonamide (B355252) from a proprietary library of small molecules. We showed that this compound was capable of potentiating nerve growth factor (NGF)-primed neurite outgrowth in neuronal cell models in a low NGF environment. In the present study we investigated the neuroprotective effects and signaling pathways of B355252 on glutamate-evoked excitotoxicity in HT-22, a murine hippocampal neuronal cell line.ResultsGlutamate significantly decreased HT-22 neuronal cell viability in a concentration-dependent manner as measured by the MTT assay. Co-treatment with 2, 4, and 8 μM B355252 protected against cell death caused by glutamate-induced toxicity by 9.1% (p<0.01), 26.0% (p<0.001), and 61.9% (p<0.001) respectively, compared to glutamate-treated control group. B355252 at a concentration of 8 μM fully rescued HT-22 from the neurototoxic effects of glutamate, and by itself increased cell viability by 16% (p<0.001) above untreated control. Glutamate enhanced reduction in glutathione (GSH) synthesis was reversed by 15% (p<0.01) in the presence of B355252. B355252 reduced the expression of apoptosis inducing factor (AIF) by 27%, while the proapoptotic Bcl-2 associated X protein (Bax) was strongly attenuated 3-fold. Glutamate-evoked increase in intracellular calcium (Ca2+) load and subsequent ROS production was inhibited by 71% (p<0.001) and 40% (p<0.001) respectively, to comparable level as untreated control in the presence of B355252. Glutamate significantly upregulated the phosphorylation of extracellular signal regulated kinase Erk1/2 (pERK1/2), while decreasing Erk3. In contrast, B355252 potently attenuated the glutamate-dependent activation of Erk1/2 and robustly increased the level of ERK3 in HT-22.ConclusionsA novel phenoxy thiophene small molecule, B355252, suppresses glutamate-evoked oxidative stress in HT-22 neurons by blocking Ca2+ and ROS production, and altering the expression or phosphorylation states of Erk kinases. This molecule previously reported to enhance neurite outgrowth in the presence of sub-physiological concentrations of NGF appears to be a promising drug candidate for development as a potential therapeutic and neuroprotective agent for various neurodegenerative disorders.

Highlights

  • Glutamate is one of the major neurotransmitters in the central nervous system

  • Several neuropathological processes are associated with glutamate excitotoxicity and oxidative stress that lead to neuronal damage and death

  • Prolonged exposure of HT-22 to glutamate triggers dosedependent cytotoxic effect We first determined the toxic effect of glutamate in HT22 cultures in concentration-dependent assays

Read more

Summary

Introduction

Glutamate is one of the major neurotransmitters in the central nervous system It is a potent neurotoxin capable of neuronal destruction through numerous signal pathways when present in high concentration. Glutamate is the most abundant neurotransmitter in the brain and plays a crucial role in neuronal tissue damage during cerebral ischemic hypoxia caused by toxic levels of the neurotransmitter in the central nervous system [1]. The tonic basal concentration of extracellular glutamate in the brain under normal physiologic condition has been estimated in the range 1–30 μM [2]. This concentration determines its role in metabolic processes. The excess glutamate leads to activation of glutamate receptors and is thought to play a role in the pathophysiology of the diseases

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call