Abstract
Dermal absorption of gaseous chemicals is an important contributor to increased health risk and has yet to be adequately addressed due to the lack of available sampling techniques. In the present study, a novel personal passive sampler consisting of a housing (embracing a polydimethylsiloxane (PDMS) disk as the sorbent phase, a membrane filter, and a stainless-steel mesh) and a watchband (traditional wristband) was constructed and used to characterize gaseous phthalates (PAEs) near the air-skin interface. In a real-life setting, the utility of the passive sampler was validated by comparing the composition profiles of PAEs in the PDMS disks and in active samples and watchbands. The compositions of PAEs were consistent in disks and gaseous constituents from ambient air, with low-molecular-weight (<306 g mol-1) PAEs accounting for 87-100% and approximately 100%, respectively. Appreciable amounts of diisononyl phthalate, diisodecyl phthalate, dinonyl phthalate, and skin lipid (e.g., squalene) were detected in watchbands but not in disks. Apparently, the passive sampler can prevent particles and skin-related chemicals from adhering to the disk and collect gaseous PAEs only. The vast majority of PAEs in watchbands was associated with nongaseous constituents. The present study demonstrated that the sampling strategy is a key factor in exposure assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.