Abstract
Plant diseases and insect pests cause a significant threat to agricultural production. Early detection and diagnosis of these diseases are critical and can reduce economic losses. The recent development of deep learning (DL) benefits various fields, such as image processing, remote sensing, medical diagnosis, and agriculture. This work proposed a novel approach based on DL for plant disease detection by fusing RGB and segmented images. A multi-headed DenseNet-based architecture was developed, considering two images as input. We evaluated the model on a public dataset, PlantVillage, consisting of 54183 images with 38 classes. The fivefold cross-validation technique achieved an average accuracy, recall, precision, and f1-score of 98.17%, 98.17%, 98.16%, and 98.12%, respectively. The proposed approach can distinguish various plant diseases with different characteristics by image fusion. The high success rate with low standard deviation proves the robustness of the model, and the model can be integrated into plant disease detection and early warning system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.