Abstract

A significant problem is enhancing the reliability of the wind energy conversion system (WECS), when that runs in unpredictable weather. Therefore, it is essential to construct a maximum power point tracker (MPPT), a controller for measuring the optimum power that the WECS is expected to generate. Hill climbing-based techniques were used to simulate the tracker, but they had drawbacks in terms of tracking efficiency and speed. The Grey Wolf optimization algorithm (GWO) for modelling MPPT integrated with the WECS is proposed in this work as a novel, effective method. The system is made up of a wind turbine (WT) conjoined to a permanent magnet synchronous generator (PMSG), a 3-phase rectifier that converts the generator’s AC output power to direct current (DC), and a boost converter whose input DC voltage is controlled by the MOSFET duty cycle. The goal of the modelling procedure is the system’s electrical output power, which is presented as an optimization problem. The results confirmed the GWO-reliability MPPT’s in reaching the desired WECS performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call