Abstract

Brain Tumor Segmentation (BTS) and classification are important and growing research fields. Magnetic resonance imaging (MRI) is commonly used in the diagnosis of brain tumours owing to its low radiation exposure and high image quality. One of the current subjects in the field of medical imaging is how to quickly and precisely segment MRI scans of brain tumours. Unfortunately, most existing brain tumour segmentation algorithms use inadequate 2D picture segmentation methods and fail to capture the spatial correlation between features. In this study, we propose a segmentation model (SwinVNETR) Swin V-NetTRansformer-based architecture with a non-local block. This model was trained using the Brain Tumor Segmentation Challenge BraTS 2021 dataset. The Dice similarity coefficients for the enhanced tumour (ET), whole tumour (WT), and tumour core (TC) are 0.84, 0.91, and 0.87, respectively. By leveraging this methodology, we can segment brain tumours more accurately than ever before. In conclusion, we present the findings of our model through the application of the Grad-CAM methodology, an eXplainable Artificial Intelligence (XAI) technique utilized to elucidate the insights derived from the model, which helped in better understanding; doctors can better diagnose and treat patients with brain tumours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.