Abstract
A novel mode-stirred reverberation chamber (RC) is designed and analyzed for millimeter wave bands. The size of the proposed RC with dimensions of 0.9 m <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times0.9$ </tex-math></inline-formula> m <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\times1.1$ </tex-math></inline-formula> m is suitable for user equipment (UE) tests. Two Z-shaped mode-stirrers are applied to generate a uniform field. To fulfill the communication and test requirements for user equipment, reference, measurement and link antennas with a large bandwidth are utilized, which can support both the frequency range (FR) 1 and FR2 bands of the 5G spectrum. The lowest usable frequency (LUF) and mode density were first calculated and examined. Then, the power transfer function (PTF) from 2 GHz to 40 GHz was obtained to verify the path loss. Three measurement campaigns were carried out to verify the accuracy of the RC. Firstly, the transmission power of the passive antenna for a conductive test was compared with the RC over the air (OTA) total radiated power (TRP) for single-tone signals. Then, signals with bandwidths of 100 MHz and 400 MHz were applied. A maximum power difference of only 0.8 dB was found in the above two experiments. Furthermore, the TRP for the same commercial 5G UE in both RC and compact antenna test range (CATR) systems was measured and compared. To the best of the authors’ knowledge, this is the first work to provide TRP results for 5G millimeter wave bands in a RC. The test results show that the TRP values for the two systems are almost the same with a maximum deviation of 0.5 dB, while the time required to carry out tests using the RC is lower than that for the CATR system.
Highlights
Reverberation chamber (RC) is widely used for electromagnetic compatibility (EMC) measurements
Unlike the omni-directional radiation pattern for long-term evolution (LTE) user equipment (UE), the antenna pattern produced by the millimeter wave module in 5G UE is directional; it is necessary to provide a line of sight (LOS) path between the UE and base station emulator during the test for maintaining a stable link signal
The path loss gap between these two test systems is larger than 10 dB at 26 GHz
Summary
China Academy of Information and Communications Technology, Beijing, 100191 China. Corresponding author: Yuxin Ren (e-mail: renyuxin @ caict.ac.cn). ABSTRACT —A novel mode-stirred reverberation chamber (RC) is designed and analyzed for millimeter wave bands. To fulfill the communication and test requirements for user equipment, reference, measurement and link antennas with a large bandwidth are utilized, which can support both the frequency range (FR) 1 and FR2 bands of the 5G spectrum. The TRP for the same commercial 5G UE in both RC and compact antenna test range (CATR) systems was measured and compared. The test results show that the TRP values for the two systems are almost the same with a maximum deviation of 0.5 dB, while the time required to carry out tests using the RC is lower than that for the CATR system. INDEX TERMS reverberation chamber, millimeter wave, OTA, TRP
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.