Abstract
Current targets, which have been set at both the European and the international level, for reducing environmental impacts and moving towards a sustainable circular economy make energy efficiency and digitization key elements of all sectors of human activity. The authors proposed, developed, and tested a complex methodology for real-time statistical analysis and forecasting of the following main elements contributing to the energy and economic performance of an end user: energy performance indicators, power quality indices, and the potential to implement actions to improve these indicators, in an economically sustainable manner, for the end user. The proposed methodology is based on machine learning algorithms, and it has been tested on six different energy boundaries. It was thus proven that, by implementing an advanced energy management system (AEMS), end users can achieve significant energy savings and thus contribute to the transition towards environmental sustainability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.