Abstract

Solution-phase printing of nanomaterials is a low-cost and effective way to build functional devices. While a multitude of industries have witnessed steady progress in it, the low line resolution remains a challenge for inkjet printing, since the droplet spreading on a substrate inevitably widens the printing tracks. In the present work, a novel embedded printing method based on a liquid viscous film to produce high-resolution lines without a small nozzle (<20 μm in diameter) or modified substrates was demonstrated. The influences of pre-cured time, substrate velocity and solvent ratio on the diameter of a single droplet and the continuity of multiple droplets were explored. A cylindrical reduced graphene oxide (rGO) line with a diameter of 10 μm had been deposited on the surface of the viscous liquid substrate and slowly wrapped into polydimethylsiloxane (PDMS) thin film by using a nozzle of 110 μm in diameter after optimizing the experimental parameters. The rGO lines encapsulated into PDMS could be stretched to 180% of its original length, during which no shedding or breaking occurred. This work presents a facile way to improve the line resolution of flexible/stretchable graphene-based lines, which probably contribute to further application of inkjet printing technology in the field of flexible and stretchable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.