Abstract

A novel image similarity index based on the greatest and smallest fuzzy set solutions of the max–min and min–max compositions of fuzzy relations, respectively, is proposed. The greatest and smallest fuzzy sets are found symmetrically as the min–max and max–min solutions, respectively, to a fuzzy relation equation. The original image is partitioned into squared blocks and the pixels in each block are normalized to [0, 1] in order to have a fuzzy relation. The greatest and smallest fuzzy sets, found for each block, are used to measure the similarity between the original image and the image reconstructed by joining the squared blocks. Comparison tests with other well-known image metrics are then carried out where source images are noised by applying Gaussian filters. The results show that the proposed image similarity measure is more effective and robust to noise than the PSNR and SSIM-based measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.