Abstract

Primary ciliary dyskinesia (PCD) is an autosomal recessive genetic disorder characterized by ultrastructural defects in the cilia or flagella of cells, causing respiratory abnormalities, sinusitis, visceral transposition, and male infertility. DNAAF3 plays an important role in the assembly and transportation of axonemal dynein complexes in cilia or flagella and has been shown to be associated with PCD. To date, only two cases of PCD with infertility associated with DNAAF3 mutations have been reported, and no mouse models for this gene have been successfully constructed. This study was conducted on an infertile Chinese male patient with a history of bronchitis. Examination of the patient's semen revealed severe asthenozoospermia and teratospermia. Whole exome sequencing revealed a new homozygous loss-of-function DNAAF3 mutation. CRISPR-Cas9 gene-editing technology was used to construct the same mutation in C57/B6 mice, revealing that homozygous C57/B6 mice were characterized by severe hydrocephalus and early death. The results of this study expand the mutation spectrum of DNAAF3 and confirm its correlation with PCD pathogenesis. This study provides new insights on the mechanisms underlying male infertility related to DNAAF3 mutation and PCD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.