Abstract
Research questionMale infertility is a widespread symptom in patients with primary ciliary dyskinesia (PCD). PCD-related male infertility is often caused by asthenozoospermia, with barely normal sperm morphology. Multiple morphological abnormalities of the sperm flagella (MMAF) are a major cause of asthenozoospermia, characterized by various malformed morphologies of sperm flagella. To date, a limited number of genes have been suggested to be involved in the pathogenesis of both PCD and MMAF. What other genes associated with both PCD and MMAF are waiting to be discovered? DesignWhole-exome sequencing (WES) was performed to identify the pathogenic mutation associated with MMAF in a PCD patient. Peripheral venous blood and semen samples were collected from the PCD patient. Transmission electron microscopy (TEM), immunofluorescence staining and western blotting were conducted to confirm the pathogenicity of the identified mutation. ResultsA novel homozygous mutation in CCDC39, c.983 T>C (p. Leu328Pro), was identified in two PCD-affected siblings of a consanguineous family showing a typical PCD phenotype, while the proband was infertile, which is associated with characterized MMAF. Furthermore, TEM revealed the abnormal ultrastructure of the patient's sperm flagella. Moreover, immunofluorescence staining revealed that CCDC39 was almost undetectable in the spermatozoa, which was further confirmed by western blotting. The outcome of intracytoplasmic sperm injection (ICSI) in the patient with the CCDC39 mutation was also favourable. ConclusionThis study demonstrates that a novel loss-of-function mutation of CCDC39 is involved in the pathogenesis of PCD and MMAF and initially reported that ICSI treatment has a good outcome. Therefore, the novel variant of CCDC39 contributes to the genetic diagnosis, counselling and treatment of male infertility in PCD patients with MMAF phenotype.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have