Abstract
To enhance in vivo absorption of zedoary turmeric oil (ZTO) and develop new formulations of a water-insoluble oily drug, novel ZTO microspheres with self-emulsifying ability, called self-emulsifying microspheres here, were prepared in a liquid system by the quasi-emulsion solvent diffusion method. The microspheres containing hydroxypropyl methylcellulose acetate succinate (HPMCAS-LG), Talc and Aerosil 200 formed the stable surfactant-free emulsion when exposed to the pH 6.8 phosphate buffer, and were significantly different from the conventional self-emulsifying systems (SES), defined as isotropic mixtures of oil, surfactant and drug. Micromeritic properties, the efficiency of emulsification and the drug-release rate of the resultant microspheres were investigated. The bioavailability of the microspheres to the conventional self-emulsifying formulation for oral administration was evaluated in 12 healthy rabbits. A HPLC method was employed to determine the plasma concentration of Germacrone, an indexical component found in ZTO. The release rates of ZTO and Germacrone from the microspheres were enhanced significantly with increasing amounts of dispersing agents, and the efficiency of self-emulsification greatly depended on the HPMCAS-LG/Aerosil 200 ratio. The emulsion droplets released from the microspheres were much smaller than that of the conventional SES. The microsphere bioavailability ( F) to the conventional SES for oral administration was 157.7%. Our method greatly improved the bioavailability of the water-insoluble oily drug from the self-emulsifying microspheres over the conventional SES and it is useful for the oily drug to form solid preparations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have