Abstract
Persistent organic pollutants, including polycyclic aromatic hydrocarbons (PAHs), pose serious threats to human health, and biodegradation has been applied as an efficient strategy for PAH removal. However, due to the high hydrophobicity of PAHs, their uptake is hindered by the bacterial outer membrane, restraining degradation efficiency. The present study reveals the critical roles of a novel FadL family protein (PadL) in the biodegradation of PAHs. PadL specifically transports PAHs such as phenanthrene and benzo[a]pyrene and PadL homologs generally exist in PAH-degrading bacteria of Sphingomonas and Novosphingobium. Our findings fill the knowledge gap in the bacterial trans-membrane uptake process of PAHs and provide a future direction for enhancing the bacterial PAH bioremediation capacity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have